139 research outputs found

    The search for and identification of amino acids, nucleobases and nucleosides in samples returned from Mars

    Get PDF
    An investigation of the returned Mars samples for biologically important organic compounds, with emphasis on amino acid, the puring and pyrimidine bases, and nucleosides is proposed. These studies would be conducted on subsurface samples obtained by drilling past the surface oxidizing layer with emphasis on samples containing the larges quantities of organic carbon as determined by the rover gas chromatographic mass spectrometer (GCMS). Extraction of these molecules from the returned samples will be performed using the hydrothermal extraction technique described by Cheng and Ponnamperuma. More rigorous extraction methods will be developed and evaluated. For analysis of the extract for free amino acids or amino acids present in a bound or peptidic form, aliquots will be analyzed by capillary GCMS both before and after hydrolysis with 6N hydrochloric acid. Establishment of the presence of amino acids would then lead to the next logical step which would be the use of chiral stationary gas chromatography phases to determine the enatiomeic composition of the amino acids present, and thus potentially establish their biotic or abiotic origin. Confirmational analyses for amino acids would include ion-exchange and reversed-phase liquid chromatographic analysis. For analyses of the returned Mars samples for nucleobases and nucleosides, affinity and reversed-phase liquid chromatography would be utilized. This technology coupled with scanning UV detection for identification, presents a powerful tool for nucleobase and nucleoside analysis. Mass spectrometric analysis of these compounds would confirm their presence in samples returned form Mars

    The search for an identification of amino acids, nucleobases and nucleosides in samples returned from Mars

    Get PDF
    The Mars Sample Return mission will provide us with a unique source of material from our solar system; material which could advance our knowledge of the processes of chemical evolution. As has been pointed out, Mars geological investigations based on the Viking datasets have shown that primordial Mars was in many biologically important ways similar to the primordial Earth; the presence of surface liquid water, moderate surface temperatures, and atmosphere of carbon dioxide and nitrogen, and high geothermal heat flow. Indeed, it would seem that conditions on Earth and Mars were fundamentally similar during the first one billion years or so. As has been pointed out, Mars may well contain the best preserved record of the events that transpired on the early planets. Examination of that early record will involve searching for many things, from microfossils to isotopic abundance data. We propose an investigation of the returned Mars samples for biologically important organic compounds, with emphases on amino acids, the purine and pyrimidine bases, and nucleosides

    A manned exobiology laboratory based on the Moon

    Get PDF
    Establishment of an exobiology laboratory on the Moon would provide a unique opportunity for exploration of extraterrestrial materials on a long-term, ongoing basis, for elucidation of exobiological processes and chemical evolution. A major function of the lunar exobiology laboratory would be to examine samples collected from other planets (e.g., Mars) for the presence of extant or extinct life. By establishing a laboratory on the Moon, preliminary analyses could be conducted away from Earth, thus establishing that extraterrestrial materials are benign before their return to Earth for more extensive investigations. The Moon-based exobiology laboratory would have three major components for study of samples returned from other planets: (1) the search for extant life - this component would focus on the detection and identification of life forms using biological, physical, and chemical methods; (2) the search for extinct life - this component would concentrate on identification of extinct life using micropaleontological physical and chemical means; and (3) the search and evidence of chemical evolution - this component would be devoted to the detection and identification of molecules revealing prebiotic chemical evolution

    Worm Epidemics in Wireless Adhoc Networks

    Full text link
    A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet

    A monotone multigrid solver for two body contact problems in biomechanics

    Get PDF
    The purpose of the paper is to apply monotone multigrid methods to static and dynamic biomechanical contact problems. In space, a finite element method involving a mortar discretization of the contact conditions is used. In time, a new contact-stabilized Newmark scheme is presented. Numerical experiments for a two body Hertzian contact problem and a biomechanical application are reported

    Chemical Derivatization Processes Applied to Amine Determination in Samples of Different Matrix Composition

    Full text link

    IntFinder: Automatically Detecting Integer Bugs in x86 Binary Program

    No full text
    corecore